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A closed set of relativistic gyrokinetic equations, consisting of the collisionless gyroki-
netic equation and the phase-independent expressions for charge and current densities, is
derived for an arbitrary four-dimensional coordinate system. The guiding-center dynam-
ics of charged particles and the gyrokinetic transformation are obtained accurate through
second order of the ratio of the Larmor radius to the gradient length. The wave-terms
(kp ~ 1) are described in the second-order approximation with respect to the amplitude of
the wave. The same approximations are used in the derivation of the gyrophase-averaged
charge and current densities. Averaging is explicit.

Covariant formulation allows the derived equations to be easily rendered for any coor-
dinate system in four-dimensional Riemann space-time. It is important for astrophysics
applications (the gravitational field is included self-consistenly,) as well as for problems
where description in curvilinear magnetic coordinates is convenient. The covariant formu-
lation of the theory, i.e. with relation to any reference frame, is inherently more general
and symmetric than the non-relativistic treatment and its “relativistic” generalizations.
As a result, even the non-relativistic limit of the theory is found to have somewhat broader
applicability range than the standard derivation.

In our previous paper [1] the development of the covariant theory has been carried
out through first order in the expansion parameter, and without the wave fields. Co-
variant theory by Boghosian [2] is derived by sequential Lee transformations, lacks non-
linear terms, and has restrictions on the electric field. Our derivation is based on the
perturbative Lagrangian approach with a fully relativistic, four-dimensional covariant
formulation. Its results are algebraically simple and improve on existing limitations of
the current gyrokinetic theory (due to internal symmetry of the electromagnetic field in
four-dimensional formulation.)

Approach

The motion of a particle with the rest-mass m, and charge ¢, in prescribed fields in
phase space can be found from the Hamilton variational principle 6.5 = 0, as the extremal
of the functional[l]

S:/Qudx“ :/(un(x”) + u,,)dz", (1)

where ¢ = ¢,/m,¢?, and variations of u, occur on the hypersurface u,u* = 1.

Assume that the gradient lengths are much larger than the Larmor radius. Allow
for existence of wave-fields with sharp gradients [kp ~ O(1), including kjp ~ O(1),] and
rapidly varying in time [wp/c ~ O(1)], but small amplitude, according to the ordering
scheme[3]:

1
Qudz* = {u, + Q(gAu + Aay,) pdat, (2)
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where ¢ and A\ are formal small parameters allowing distinction between the large-scale
background field A,, and the wave-fields given by a,. We search for the gyrokinetic
transformation (y°) = (2, ¢, fi, u)) < (z*,u”) as

=2+ Y (), 3)
s=1

where ¢ is the gyrophase, ¥ is the 4-vector “guiding center” position, r, are arbitrary
4-vector functions of the new variables (y°) to be determined. We require that r, are
purely oscillatory in ¢, i.e. the ¢-averages of r, are zero, as a part of the z’/- definition.

To define the rest of the gyrokinetic transformation, we first introduce an orthogonal
basis of unit 4-vectors (7,1,1',1”) so that the last three 4-vectors are space-like. A special
choice of orientation links the basis (7,1,1',1”) to the electromagnetic field tensor, F,, =
0A,/0z* — 0A,/Ox”. With this choice the (I',1”)-plane coincides with the space-like
invariant plane of the antisymmetric tensor F,,. Then if (I',1”) is the first invariant plane

of F,,, then (1,7) is the other, and if H and E are the eigenvalues of F),,, then

E 0" =Hl, F,I"=-Hl, Ful"=FEr, F,=El,,. (4)
The four-velocity in the new variables is defined as
U, = w (l; cos ¢ + [, sin ¢) + Uy, (5)

which can be regarded as the definition for the gyrophase ¢: it is defined as an angle in the
velocity-subspace, where we introduce the cylindrical coordinate system. This definition
is covariant. The ¢-independent part of the 4-velocity 1 is not completely arbitrary, but
satisfies certain restrictions following from u,u* =1 for all ¢:

Oy = uply + oy, up =14 w’ +uy)? (6)

. Any two of three scalar functions w, u, or u can be considered independent character-
istics of velocity, while the third can be expressed via (6).

Evaluating the Lagrangian in new variables and requiring it to be independent of ¢,
we arrive at the form of the gyrokinetic transformation and the new Lagrangian.

Results

The transformed variational principle is found in the second order in A and second
order in ¢, i.e. with terms of the order €2)\? and £? retained: §5 = 0 yields the particle
phase-space trajectory with

1/2 1
s= | <un(x') gl + (L4 2gH 4+ w?) 7 7+ g + 2@;@ 2 + dg, .
7

where (2" u,f1, ¢) or (x*,u,w, $) are the new gyrokinetic variables with

it = w?/2qH" + i),

% = o [ k0,00 gy ) + ®)
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is the averaged wave-field potential,

H* = H<1+/d4 fw(f)ll'”l”“ef (é‘)eikx)’

3
1/2
&= kip= (20 [(h1")? + (™)) Jal) " fu = Da, )0 — Da )0,
T o " ol wirs IS 1 aF#V
X = U = U — (1 + 1) =

H Ox's

describes the inhomogeneity of the electromagnetic field.
The second-order (nonlinear) corrections look like

= L [ At SO 0, 0k, Day () [ (€1) — () o (€)].

(27)

where D" is the inverse of F,,, & =¢(K'); & =&k +k);

2
~2) W // 47794 K)a, (K') e/t )x puv
f e (27r 'K d*k a,(k)a, (k)e'l “R

where
uv i il J 5/, ’ / J 5 nv

R = (1"~ 1 z<)[ 15(” )(k:¢+kc)—Jo(§) 15( )kC]kT,D -

Ji (£")

25//

+

The four equations of motion can be cast in the form
1
<qu;j +1"T, [uﬂu + uoT, + qa, + 2[@(#]) dz™™ = 0,

|
(—qHz,; LT, {uﬂu T ugT, + g+ Qﬂxu]> da = 0,

1
PJX/L} da™ =

duj—qE7,dz™ +1"T, {ul + Ty + @t 5

(Uolu + U||7'M) da'™ =

ke (I — 11" D",

30f4

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The first two equations describe the drift motion, where the operator T, is defined by
T, lyu) = 0y, /0x"™ — Oy, /Ox™. The last two equations determine the parallel velocity and

the energy conservation.

The collisionless kinetic equation can be represented in the parametrization - inde-

pendent form as

0f of
03:“ ou,

=0,
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where the differentials are tangent to the particle orbit. In the usual way it can be
transformed into the gyrokinetic equation

——da’* + 8—fduH =0, (17)

where the differentials are defined by equations (13)-(16).
The electromagnetic field is governed by Maxwell’s equations with self-consistently-
defined 4-current density j*

0
ox?

(V=aF) = T = Q(x), (18)

which can be expressed via the gyrokinetic distribution function as

, dwdod
Q' (x) = —47?2(1,1/[ (1" cos ¢ + 1" “smgb)—i—u”l“—l—uoT“] fa(x Zezri)w.
i=1 Uo
It can be evaluated by orders of ¢, A as
2
Qo prx
Qfoo) = —87TQZ WH (x“)/ < [h7n T“) f( ) ( ,u,u”) dpiduy, (19)
8 F3/2 £(0) o F3/2 £(0)
87T2 Z / fa ZNM o l//l/ fa l/p, d[/sz”,
mac2 \/_ (’%V Up oxV Up (20)

Q(01 —2 Z

qﬂ _H / djidu / dRfD (ki) e lkX{(Z'lzur#) Jo (6) +

20H
+ 1% (l”“l/l’ o lllyl/'u)igkl, Jlég)} ’ (21)

U
etc. Here fél) is the Fourier-decomposed part of the distribution function caused by the
wave.
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