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A closed set of relativistic gyrokinetic equations, consisting of the collisionless gyroki-
netic equation and the phase-independent expressions for charge and current densities, is
derived for an arbitrary four-dimensional coordinate system. The guiding-center dynam-
ics of charged particles and the gyrokinetic transformation are obtained accurate through
second order of the ratio of the Larmor radius to the gradient length. The wave-terms
(kρ ∼ 1) are described in the second-order approximation with respect to the amplitude of
the wave. The same approximations are used in the derivation of the gyrophase-averaged
charge and current densities. Averaging is explicit.

Covariant formulation allows the derived equations to be easily rendered for any coor-
dinate system in four-dimensional Riemann space-time. It is important for astrophysics
applications (the gravitational field is included self-consistenly,) as well as for problems
where description in curvilinear magnetic coordinates is convenient. The covariant formu-
lation of the theory, i.e. with relation to any reference frame, is inherently more general
and symmetric than the non-relativistic treatment and its “relativistic” generalizations.
As a result, even the non-relativistic limit of the theory is found to have somewhat broader
applicability range than the standard derivation.

In our previous paper [1] the development of the covariant theory has been carried
out through first order in the expansion parameter, and without the wave fields. Co-
variant theory by Boghosian [2] is derived by sequential Lee transformations, lacks non-
linear terms, and has restrictions on the electric field. Our derivation is based on the
perturbative Lagrangian approach with a fully relativistic, four-dimensional covariant
formulation. Its results are algebraically simple and improve on existing limitations of
the current gyrokinetic theory (due to internal symmetry of the electromagnetic field in
four-dimensional formulation.)

Approach

The motion of a particle with the rest-mass ma and charge qa in prescribed fields in
phase space can be found from the Hamilton variational principle δS = 0, as the extremal
of the functional[1]

S=
∫
Qµdx

µ =
∫

(qAµ(x
ν) + uµ)dx

µ, (1)

where q = qa/mac
2, and variations of uµ occur on the hypersurface uµu

µ = 1.
Assume that the gradient lengths are much larger than the Larmor radius. Allow

for existence of wave-fields with sharp gradients [kρ ∼ O(1), including k‖ρ ∼ O(1),] and
rapidly varying in time [ωρ/c ∼ O(1)], but small amplitude, according to the ordering
scheme[3]:

Qµdx
µ = {uµ + q(

1

ε
Aµ + λaµ)}dxµ, (2)
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where ε and λ are formal small parameters allowing distinction between the large-scale
background field Aµ, and the wave-fields given by aµ. We search for the gyrokinetic
transformation (yi) ≡ (x′α, φ, µ̂, u‖)↔ (xα, uβ) as

xν = x′ν +
∑

s=1

εsrνs (y
i), (3)

where φ is the gyrophase, x′ν is the 4-vector “guiding center” position, rs are arbitrary
4-vector functions of the new variables (yi) to be determined. We require that rs are
purely oscillatory in φ, i.e. the φ-averages of rs are zero, as a part of the x′ν- definition.

To define the rest of the gyrokinetic transformation, we first introduce an orthogonal
basis of unit 4-vectors (τ, l, l′, l′′) so that the last three 4-vectors are space-like. A special
choice of orientation links the basis (τ, l, l′, l′′) to the electromagnetic field tensor, Fµν =
∂Aν/∂x

µ − ∂Aµ/∂x
ν . With this choice the (l′, l′′)-plane coincides with the space-like

invariant plane of the antisymmetric tensor Fµν . Then if (l′, l′′) is the first invariant plane
of Fµν , then (l, τ) is the other, and if H and E are the eigenvalues of Fµν , then

Fµνl
′′ν = Hl′µ, Fµνl

′ν = −Hl′′µ, Fµνl
ν = Eτµ, Fµντ

ν = Elµ. (4)

The four-velocity in the new variables is defined as

uµ = w
(
l′µ cosφ+ l′′µ sinφ

)
+ ūµ, (5)

which can be regarded as the definition for the gyrophase φ: it is defined as an angle in the

velocity-subspace, where we introduce the cylindrical coordinate system. This definition
is covariant. The φ-independent part of the 4-velocity ū is not completely arbitrary, but
satisfies certain restrictions following from uµu

µ = 1 for all φ:

ūµ = u‖lµ + uoτµ, u2
o = 1 + w2 + u‖

2 (6)

. Any two of three scalar functions w, uo or u‖ can be considered independent character-
istics of velocity, while the third can be expressed via (6).

Evaluating the Lagrangian in new variables and requiring it to be independent of φ,
we arrive at the form of the gyrokinetic transformation and the new Lagrangian.

Results

The transformed variational principle is found in the second order in λ and second
order in ε, i.e. with terms of the order ε2λ2 and ε2 retained: δS = 0 yields the particle
phase-space trajectory with

S =
∫ (

qAµ(x
′) + u‖lµ +

(
1 + 2qH∗µ̂+ u‖

2
)1/2

τµ + qaµ +
1

2
µ̂χµ

)
dx′µ + µ̂dφ,

(7)

where (x′µ,u‖,µ̂, φ) or (x′µ,u‖,w, φ) are the new gyrokinetic variables with

µ̂ = w2/2qH∗ + µ̂(2),

aµ =
1

(2π)2

∫
d4k aµ(k)eikx

′

J0 (ξ) + aµ
(1), (8)
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is the averaged wave-field potential,

H∗ = H

(
1 +

1

2π2

∫
d4k

fµν(k)l′νl′′µ

H

J1 (ξ)

ξ
eikx

′

)
, (9)

ξ = k⊥ρ =
(
2µ̂

[
(kνl

′ν)2 + (kνl
′′ν)2

]
/qH

)1/2
; fµν = ∂aν/∂x

µ − ∂aµ/∂x
ν .

χµ = l′ν
∂l′′ν

∂x′µ
− l′′ν

∂l′ν

∂x′µ
− (l′νl′ς + l′′νl′′ς)

1

H

∂Fµν
∂x′ς

(10)

describes the inhomogeneity of the electromagnetic field.
The second-order (nonlinear) corrections look like

aµ
(1) =

i

(2π)4

∫ ∫
d4kd4k′ ei(k+k

′)x′aµ(k)kνD
νηaη(k

′) [J0 (ξ′′)− J0 (ξ) J0 (ξ′)] .
(11)

where Dνµ is the inverse of Fµν , ξ′ = ξ(k′); ξ′′ = ξ(k + k′);

µ̂(2) =
w2

qH2

1

(2π)4

∫ ∫
d4k′d4k aµ(k)aν(k

′)ei(k+k
′)x′Rµν ,

where

Rµν =
(
l′µl′′ζ − l′′µl′ζ

) [J1 (ξ′′)

ξ′′

(
kζ + k′ζ

)
− J0 (ξ′)

J1 (ξ)

ξ
kζ

]
kηD

ην +

+
J1 (ξ′′)

2ξ′′
kηk

′
ζ(l
′ηl′′ζ − l′ζ l′′η)Dνµ. (12)

The four equations of motion can be cast in the form
(
qHl′′µ + l′νTν

[
u‖lµ + u0τµ + qaµ +

1

2
µ̂χµ

])
dx′µ = 0, (13)

(
−qHl′µ + l′′νTν

[
u‖lµ + u0τµ + qaµ +

1

2
µ̂χµ

])
dx′µ = 0, (14)

du‖−qEτµdx′µ + lνTν

[
u‖lµ + u0τµ + qaµ +

1

2
µ̂χµ

]
dx′µ = 0. (15)

(
u0lµ + u‖τµ

)
dx′µ = 0. (16)

The first two equations describe the drift motion, where the operator Tν is defined by
Tν [yµ] ≡ ∂yµ/∂x

′ν−∂yν/∂x′µ. The last two equations determine the parallel velocity and
the energy conservation.

The collisionless kinetic equation can be represented in the parametrization - inde-
pendent form as

∂f

∂xµ
dxµ +

∂f

∂uν
duν = 0,
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where the differentials are tangent to the particle orbit. In the usual way it can be
transformed into the gyrokinetic equation

∂f

∂x′µ
dx′µ +

∂f

∂u‖
du‖ = 0, (17)

where the differentials are defined by equations (13)-(16).
The electromagnetic field is governed by Maxwell’s equations with self-consistently-

defined 4-current density jµ

∂

∂xν

(√−gF µν
)

= −4π

c

√−gjµ = Qµ(x), (18)

which can be expressed via the gyrokinetic distribution function as

Qµ(x) = −4π
∑

α

qα

∫ [
w (l′µ cosφ+ l′′µ sinφ) + u‖l

µ + uoτ
µ
]
fα(x−

∑

i=1

εiri)
wdwdφdu‖

uo
.

It can be evaluated by orders of ε, λ as

Qµ
(00) = −8π2

∑

α

q2
α

mαc2
H∗(xµ)

∫ (
u‖
uo
lµ + τµ

)
f (0)
α

(
xµ, µ̂, u‖

)
dµ̂du‖, (19)

Qµ
(10) = −8π2

∑

α

q2
α

mαc2

∫ µ̂√
H

(
l′ν

∂

∂xν

(
H3/2f (0)

α

uo
l′′µ

)
− l′′ν

∂

∂xν

(
H3/2f (0)

α

uo
l′µ
))

dµ̂du‖,
(20)

Qµ
(01) = −2

∑

α

q2
α

mαc2
H
∫

dµ̂du‖

∫
d4kf (1)

α

(
k,µ̂, u‖

)
eikx

{(
u‖
uo
lµ + τµ

)
J0 (ξ) +

+
2µ̂H

uo
(l′′µl′ν − l′′νl′µ)iεkν

J1 (ξ)

ξ

}
, (21)

etc. Here f (1)
α is the Fourier-decomposed part of the distribution function caused by the

wave.
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